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ABSTRACT 
Passive radar is mainly aimed for detection and tracking of airborne targets using emitters of 
opportunity for target illumination. As they multistatic in nature, the main problem is that the 
measurements are based on bistatic range and range velocity estimation and main problem is in 
data fusion, while it is necessary to fuse the data from different pairs of transmitter-receiver to form 
and update tracks. In most cases the measurement provide only range Doppler information and no 
angular information, so in such a case target position can be estimated solving nonlinear set of 
equations and finding best possible association. In the notes the fundamentals of positioning and 
tracking are presented. Theoretical considerations are illustrated with selected simulation results.  

1.0 INTRODUCTION 
The typical scenario of passive radar measurements is presented in Fig. 1. 

Fig. 1.Typical scenario of target detection using PCL radar. 

The PCL radar measures the target position and position changes in the bistatic coordinates. Tt measure 
the time difference of arrival between two signals – direct end reflected, which is proportional to the 
bistatic range and the Doppler shift between those two signals which is proportional to the bistatic velocity 
(time derivative of bistatic range). 
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In such a case the angular measurements can also be used for improving accuracy (in case of precise 
angular measurements) and for improving association problem, when only ellipsoid crossing in the 
direction pointed by angle estimator are considered ad true one.  

Please note, that in presented case we have single point of 3 ellipsoid crossing and two punts where two of 
them crossing. Such points can be also take into account and it could create false targets. 

There are several aims of the tracker – the primary one is to provide the initiation and tracking of all 
detected targets, but to perform this it is necessary to eliminate false bistatic plots, initiate new probe 
tracks, associate bistatic plots to the existing tracks, estimate the track quality, update tracks and terminate 
tracks when no sufficient track updates are available. 

In this paper, a two-stage tracking algorithm is presented. First, the plots corresponding to different 
transmitters are used by separate bistatic trackers. In this way most of false measurements are separated 
from true target detections. In the second state the bistatic tracks are combine to form the Cartesian tracks. 
It can be performed using different approach, but one of the most promising is to use Extended Kalman 
Filter  (EKF) feed by the bistatic plots taken from bistatic tracker. As the result the second stage is based 
on the EKF. The filter uses the raw plots associated by the bistatic tracker.  

A similar approach of multi-stage algorithm was presented in [4] in the context of target tracking using a 
single frequency network of DAB/DVB-T transmitters.  

2.0 BISTATIC TRACKING 

The instantaneous bistatic range (proportional to the time difference of arrival) can be calculated from : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) brrrttt rzzyyxxzzyyxxtr −−+−+−+−+−+−= 222222 , (1) 

where (x, y, z) is the target position, (xt, yt, zt) is the transmitter position, (xr, yr, zr) is the receiver position, and rb is 
the base line length (distance between transmitter and receiver). The instantaneous bistatic velocity (proportional to 
the Doppler shift) calculated as the first derivative of the bistatic range has the following form: 
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where (vx, vy, vz) is the vector of target velocities. In the sequel, the equations (1) and (2) will be used for constructing 
the EKF. For the purpose of the tracking in the bistatic coordinates, the bistatic range can be approximated by a 
second-degree polynomial: 

( )
2

2AtVtRtr ++= , (3) 

where R is the bistatic range, V is the bistatic velocity and A is the bistatic acceleration. 

One can construct a tracker operating in bistatic coordinates based on (3) using an almost-constant-acceleration 
model [5, 6]: 

( ) ( ) ( )kkk bbbb vxFx +−= 1 , (4) 

where ( ) ( ) ( ) ( )[ ]',, kAkVkRkb =x , 
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and ( )kbv  is uncorrelated Gaussian process noise with covariance: 
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 The measurement is modeled as: 

( ) ( ) ( )kkk bbbb wxHz += , (7) 

where ( ) ( ) ( )[ ]'ˆ,ˆ kVkRkb =z , 
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and ( )kbw  is uncorrelated Gaussian measurement noise with covariance: 
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Based on (3) and (4), standard linear Kalman filtering equations can be used [5, 6]. 

State prediction 

( ) ( )1|1ˆ1|ˆ −−=− kkkk bbb xFx , (10) 

Covariance of prediction 

( ) ( ) ccbbb kkkk QFPFP +−−=− '1|11| , (11) 

Kalman Gain estimation 

( ) ( ) ( ) ( ) RHPHS +−= kkkkk bbbb '1| , (12) 

( ) ( ) ( ) ( )kkkkk bbbb
1'1| −−= SHPK , (13) 

State filtration 

( ) ( ) ( ) ( ) ( )( )( )1|ˆ1|ˆ|ˆ −−+−= kkhkkkkkk xzΚxx , (14) 

( ) ( ) ( )( ) ( )1|| −−= kkkkkk bbbb PHΚIP . (15) 
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3.0 CARTESIAN TRACKING 

The relationship between bistatic and Cartesian parameters is nonlinear, as can be seen from (1) and (2). 
There are several solutions for such problem. In radar field very often the measurements are converted 
from their native coordinates to the Cartesian coordinates and then tracking is performed using classical 
Kalman or Particle filters. But much simple solution can be achieved using extended Kalman Filter which 
uses linear approximations of the nonlinear equations.  

The target state vector consisting of position and velocities can be expressed in Cartesian coordinates as : 
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]',,,,, kvkzkvkykvkxk zyxc =x . The state evolution process can then be described as : 

( ) ( ) ( )kkk cccc vxFx +−= 1 , (16) 

where ( )FFFF ,,diagc = , with 
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and ( )kcv  is uncorrelated Gaussian process noise with covariance ( )QQQQ 222 ,, wzwywxc diag σσσ=  where 
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The measurement corresponding to the m-th transmitter can be modeled as : 

( ) ( )( ) ( )kkhk m
bc

mm
b wxz += , (19) 

where ( ) ( ) ( )[ ]'ˆ,ˆ kVkRk mmm
b =z  is the measurement vector, and ( )⋅mh  is a nonlinear function transforming 

the Cartesian parameters to bistatic parameters according to equations (1) and (2). The covariance of the 
measurement noise is bR  as stated in equation (9). The Extended Kalman Filter works almost as the 
standard one, but the matrix H is calculated as linearization of the function ( )⋅mh  at the predicted position 
( )1|ˆ −kkx  with respect to state vector elements:
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The explicit form of H can be found in [10. The prediction in the considered case has the following form: 

( ) ( )1|1ˆ1|ˆ −−=− kkkk ccc xFx , (21) 

( ) ( ) ccccc kkkk QFPFP +−−=− '1|11| , (22) 

where ( )1| −kkcP is the a priori state covariance matrix and ( )1|1 −− kkcP  is the a posteriori covariance matrix. 

There are two methods for updating the estimate in a multisensory scenario: parallel and sequential [6]. In the 
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parallel method, the measurements ( )km
bz , and the matrices ( )kmH  are stacked and the update is performed in one

step. In the sequential method, the state vector and covariance are updated with measurements corresponding to each 
transmitter separately. When the system is linear, the both methods are equivalent, however, the first is more 
computationally expensive as it requires operations on larger vectors and matrices and can be less numerically 
stabile, while it is necessary to invert much bigger matrices. In our case the system is not linear, but the results are 
almost this some as long as the initialization of process is close to the true object position. , as in the considered case, 
one should start with the most accurate measurement to minimize linearization errors.  

3.1 PARALLEL UPDATING 

In parallel update concept all measurement data is used in one single step as depicted in Fig. 4. 

Fig. 4.Parralel update Kalman Filter. 

The measurement vector as well as the state-to-measurement matrix is stacked to form the quantities corresponding 
to all three (or more) transmitters: 
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The covariance matrix of the measurement error for all transmitters is also created from matrices for separate 
transmitters: 

( )bbbdiag RRRR ,,= . (25) 
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The update equations are as follows: Gain update 

( ) ( ) ( ) ( ) RHPHS +−= kkkkk c '1| , (26) 

( ) ( ) ( ) ( )kkkkk c
1'1| −−= SHPK , (27) 

State vector update 

( ) ( ) ( ) ( ) ( )( )( )1|ˆ1|ˆ|ˆ −−+−= kkhkkkkkk xzΚxx , (28) 

Covariance matrix update 

( ) ( ) ( )( ) ( )1|| −−= kkkkkk cc PHΚIP . (29) 

Of course, the structure of the filter is varying when number of measurements assigned to the track is varying. As 
result it is necessary to design different Kalman filters for different number of measurements, and all filters have 
different sizes of matrices. It is also possible to design single filter for maximum number of TxRx pairs and in the 
case of lack of target detection corresponding to one of the tx-rx pair use the predicted value from the bistatic tracker 
and modify the measurement covariance matrix bR corresponding to that pair (set to an infinite value what is 
numerically difficult or at least to very high value assuring stable result) to provide information of the tack of 
measurement. 

3.2 SEQUENTIAL UPDATING 
Instead of using parallel update it is possible to use sequential update. In such approach the whole filtering is divided 
into several stages. In the first stage the prediction is being performed as presented in the Fig. 5. 

Fig. 5.Serial update Kalman Filter. 

 In the sequential method, the state estimate and covariance are updated by each measurement separately. First, 
temporary variables are created: 

switch 
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( ) ( )1|ˆ1|ˆ 0 −=− kkkk xx , (30) 

( ) ( )1|1|0 −=− kkkk cc PP . (31) 

Next, the sequential updating is performed for each of the M measurements (m=1..M) 

( ) ( ) ( ) ( ) b
mm

c
mm kkkkk RHPHS +−= − '1|1 , (32) 

( ) ( ) ( )( ) ( )kkkkk mmm
c

m 11 '1| −− −= SHPK , (33) 

( ) ( ) ( ) ( ) ( )( )( )1|ˆ1|ˆ1|ˆ 1 −−+−=− − kkhkkkkkk mm
b

mmm xzΚxx , (34) 

( ) ( ) ( )( ) ( )1|1| 1 −−=− − kkkkkk m
c

mmm
c PHΚIP . (35) 

The final stage is consists of updated of state estimate and covariance matrix: 

( ) ( )1|ˆ|ˆ −= kkkk Mxx , (36) 

( ) ( )1|| −= kkkk M
cc PP . (37) 

In sequential update procedure the structure of Kalman Filter is fixed – reacted to single measurement and updates 
are perform only to measurements assigned to the track. In such case there is no necessity to artificially marked 
missing plots, and algorithm is very universal. It can use as many receiver-transmitter pairs and can be also adapted 
to different measurements (PCL radars with/without angle estimation, active monostatic radars, PET devices based 
on DOA or TDOA methods and many more). 

3.2 SIMULATIONS 

In the first example, three targets were simulated. The target trajectories were generated using the assumed 
model (10) with wxσ  = wyσ  = 1 m/s and wzσ  = 0.1 m/s. The receiver Rx was located at (0, 0, 0) km. The 
transmitters Tx1, Tx2 and Tx3 were located at (42, 40, 0) km, (-20, 0, 0) km and (10, -40, 0) km, 
respectively. The refresh interval T  was equal to 1 s. The target trajectories, the transmitters and the 
receiver are shown in Fig. 6.  
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Fig. 6. Target trajectories in Cartesian coordinates 

The Cartesian parameters were converted into bistatic ones using (1) and (2). The probability of detection 
was set to 0.7 for every transmitter and every target. The bistatic measurements were disturbed by adding 
Gaussian errors according to (7) with Rσ  = 500 m and  Vσ  = 1 m/s – parameters typical for FM-based 
system. Figs. 7, 8 and 9 show true, measured and tracked bistatic parameters corresponding to one of the 
targets (target 1). The error of bistatic measurements can be clearly seen, especially for the bistatic range. 
This is the result of low bandwidth of the FM signal (approx. 100 kHz), which leads to low range 
resolution (app. 3 km resolution cell). As can be seen, the Kalman filters working in the bistatic 
coordinates increase the accuracy of bistatic range measurement significantly. However, as was indicated 
earlier, the bistatic trackers are used only for data association – the EKF uses the raw plots and not the 
state estimate of the bistatic trackers. 

Fig. 7. True, measured and tracked bistatic parameters versus time for transmitter Tx1 and target 1. 
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Fig. 8. True, measured and tracked bistatic parameters versus time for transmitter Tx2 and target 1. 

Fig. 9.True, measured and tracked bistatic parameters versus time for transmitter Tx3 and target 1. 

Fig. 10 shows the true and tracked Cartesian coordinates of target 1 versus time using parallel updating. In 
can be seen that parameters in x and y coordinates are tracked with high accuracy. The estimate of the z 
coordinate is characterized by a large error, which decreases slowly in time. This is a well-known 
phenomenon – due to the geometrical relationships, the accuracy of the height estimation is worse than the 
accuracy of x and y coordinates.  
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Fig. 10. True and tracked Cartesian coordinates versus time for target 1 (parallel updating). 

In Fig. 11, a comparison of the theoretical (filter-calculated) and the actual position errors x∆ , y∆  and z∆

for parallel updating is presented. The real error was calculated as a standard deviation of the difference 
between true and tracked position coordinate. Filter-calculated accuracy was the averaged value of the 
appropriate element of the ( )kkc |P  matrix. As could be inferred from the previous figure, the accuracy of 
the height estimation is worse than the accuracy of x and y coordinates. In the case of x and y coordinates 
accuracy of hundreds of meters can be expected, which decreases to tens of meters during the course of 
tracking. The initial height accuracy is over 1 km and decreases to hundreds of meters.  One can also 
observe that the actual and theoretical accuracies are very similar. This would not be true if the state 
estimates from the bistatic tracker were used in EKF – the filter would calculate the covariance too 
optimistically because of the correlation of the input measurements.  

Fig. 11. Real and filter-calculated x, y, and z position accuracies versus time for target 1 (parallel 

Passive Coherent Locator Tracking and Data Fusion 

STO-EN-SET-243 5 - 11 

PUBLIC RELEASE 

PUBLIC RELEASE 



updating). 

Fig. 12 shows the same position errors obtained using the sequential updating approach. As can be seen, 
the results are very similar to the structure with parallel updating. It is worth mentioning that using only 
bistatic measurements, without bearing information, it is possible to achieve 3D tracking with acceptable 
accuracy, not worse than in classical active radars. 

The actual and theoretical errors corresponding to the three velocity components Vx∆ , Vy∆  and Vz∆  are 
shown in Fig. 13. In this case, inferior accuracy in z dimension is also visible. 

Fig. 12. Real and filter-calculated x, y, and z position accuracies versus time for target 1 (sequential 
updating). 

Fig. 13. Real and filter-calculated x, y, and z velocity accuracies versus time for target 1 (parallel 
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updating). 

In order to compare the proposed two-stage algorithm with a one-stage tracker using the EKF only, the 
following simulation was carried out. Three targets were simulated and their bistatic parameters were 
calculated. Apart from the target-originated detections, false alarms were added to the bistatic 
measurements. The detections were generated uniformly on the bistatic range – bistatic velocity surface. It 
was assumed that the crossambiguity of the reference and surveillance signals is calculated for bistatic 
range (0, 300) km and bistatic velocity (-400, +400) m/s. The bistatic range resolution cell was 3 km and 
the bistatic velocity resolution cell was 2 m/s. As a result, 100 range resolution cells and 400 velocity 
resolution cells were obtained – 40000 cells in total. The number of false detections were generated 
according to the Poisson distribution based on the number of the resolution cells and the probability of 
false alarm (Pfa). In the one-stage tracker, the raw bistatic plots were used. In the two-stage algorithm, the 
bistatic trackers used 2/3 cascaded initialization logic. Only the bistatic plots corresponding to the 
initialized bistatic tracks were used in the EKF-based tracker. In both cases, one- and two-stage algorithm, 
a Cartesian track was created for each output of the ellipsoid intersection algorithm, which tests every 
possible combination of the bistatic measurements in search for simultaneous ellipsoid intersection. The 
simulation was repeated 100 times. 

The table I shows the result of the comparison of the two approaches for different values of the Pfa. The 
number in the table indicate the average number of “ghost Cartesian tracks” – Cartesian tracks initialized 
by ghost targets. The results show that the number of ghost tracks in the case of two-stage tracker is 
reduced, especially in the case of high Pfa. It results from the fact that bistatic trackers in the two-stage 
algorithm eliminate the false detections almost completely. The remaining ghost targets result from the 
random intersections of the bistatic ellipsoids corresponding to the true targets. 

The elimination of the false alarms also leads to reduced computational complexity of the intersection 
finding algorithm. The number of the possibilities which the algorithm has to test is ∏i iN , where iN  is 
the number of bistatic measurements corresponding to the i-th transmitter. As can be easily seen, the 
number of possibilities to test grows very fast with iN . In the one-stage tracker, iN  is equal to the number 
of targets (assuming probability of detection equal to 1) plus the number of false detections. In the two-
stage tracker,  iN  very close to the number of targets – random false detections cause track initialization 
very rarely. 

Pfa One-stage 
tracker 

Two-stage 
tracker 

10-3 212.90 0.30 

10-4 1.40 0.24 

10-5 0.43 0.23 

Tab. I. A comparison of  the average number of ghost tracks for one- and two-stage algorithm. 

The disadvantage of the two-stage approach is the time delay associated with the process of bistatic track 
initialization. The Cartesian track is created only after the bistatic tracks corresponding to all transmitters 
are initialized. In the case of M/N initialization logic, at least M observations are required to confirm a 
track. If the probability of detection is low, the average number of observations needed for track 
confirmation may be much larger. 

The computational complexity of additional bistatic trackers in the two-stage approach is compensated by 
the reduced number of ellipsoid intersections tests due to the false detections elimination. 
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